Sparse Shearlet Representation of Fourier Integral Operators

نویسنده

  • KANGHUI GUO
چکیده

Fourier Integral Operators appear naturally in a variety of problems related to hyperbolic partial differential equations. While wavelets and other traditional time-frequency methods have been successfully employed for representing many classes of singular integral operators, these methods are not equally effective in dealing with Fourier Integral Operators. In this paper, we show that the shearlets provide a very efficient tool for the analysis of a large class of Fourier Integral Operators. The shearlets, recently introduced by the authors and their collaborators, are an affine-like system of well-localized waveform at various scales, locations and orientations. It turns out that these waveforms are particularly adapted to the action of Fourier Integral Operators. In particular, we prove that the matrix representation of a Fourier Integral Operator with respect to a Parseval frame of sherlets is sparse and well-organized. This fact confirms similar results recently obtained by Candès and Demanet, pointing out to the effectiveness of appropriately constructed directional multiscale representations in dealing with operators associated with hyperbolic problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Separation in R

The geometric separation problem, initially posed by Donoho and Kutyniok [7], aims to separate a distribution containing a non-trivial superposition of point and curvilinear singularities into its distinct geometric constituents. The solution proposed in [7] considers expansions with respect to a combined wavelet-curvelet dictionary and applies an `-norm minimization over the expansion coeffici...

متن کامل

Representation of Fourier Integral Operators using Shearlets

Traditional methods of time-frequency and multiscale analysis, such as wavelets and Gabor frames, have been successfully employed for representing most classes of pseudodifferential operators. However these methods are not equally effective in dealing with Fourier Integral Operators in general. In this paper, we show that the shearlets, recently introduced by the authors and their collaborators...

متن کامل

ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm

Abstract. Multivariate problems are typically governed by anisotropic features such as edges in images. A common bracket of most of the various directional representation systems which have been proposed to deliver sparse approximations of such features is the utilization of parabolic scaling. One prominent example is the shearlet system. Our objective in this paper is three-fold: We firstly de...

متن کامل

Convex Multilabel Segmentation with Shearlet Regularization

Segmentation plays an important role in many preprocessing stages in image processing. Recently, convex relaxation methods for image multi-labeling were proposed in the literature. Often these models involve the total variation (TV) semi-norm as regularizing term. However, it is well-known that the TV functional is not optimal for the segmentation of textured regions. In recent years directiona...

متن کامل

Optimally Sparse Representations of 3D Data with C2 Surface Singularities Using Parseval Frames of Shearlets

This paper introduces a Parseval frame of shearlets for the representation of 3D data, which is especially designed to handle geometric features such as discontinuous boundaries with very high efficiency. This system of 3D shearlets forms a multiscale pyramid of well-localized waveforms at various locations and orientations, which become increasingly thin and elongated at fine scales. We prove ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007